(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
log(s(0)) → 0
log(s(s(X))) → s(log(s(quot(X, s(s(0))))))

S is empty.
Rewrite Strategy: FULL

(3) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(X), s(Y)) →+ min(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].

(4) BOUNDS(n^1, INF)